Modified Poisson kernels on rank one symmetric spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomogeneity One Actions on Noncompact Symmetric Spaces of Rank One

We classify, up to orbit equivalence, all cohomogeneity one actions on the hyperbolic planes over the complex, quaternionic and Cayley numbers, and on the complex hyperbolic spaces CHn, n ≥ 3. For the quaternionic hyperbolic spaces HHn, n ≥ 3, we reduce the classification problem to a problem in quaternionic linear algebra and obtain partial results. For real hyperbolic spaces, this classificat...

متن کامل

Singular Integrals on Symmetric Spaces of Real Rank One

In this paper we prove a new variant of the Herz majorizing principle for operators defined by K-bi-invariant kernels with certain large-scale cancellation properties. As an application, we prove L p-boundedness of operators defined by Fourier multipliers which satisfy singular differential inequalities of the Hörmander-Michlin type. We also find sharp bounds on the L p-norm of large imaginary ...

متن کامل

A Note on Poisson Symmetric Spaces

We introduce the notion of a Poisson symmetric space and the associated infinitesimal object, a symmetric Lie bialgebra. They generalize corresponding notions for Lie groups due to V. G. Drinfel’d. We use them to give some geometric insight to certain Poisson brackets that have appeared before in the literature. 1 Motivation Let us recall briefly the best-known examples of Poisson manifolds. Th...

متن کامل

A Poisson Structure on Compact Symmetric Spaces

We present some basic results on a natural Poisson structure on any compact symmetric space. The symplectic leaves of this structure are related to the orbits of the corresponding real semisimple group on the complex flag manifold.

متن کامل

Ford Fundamental Domains in Symmetric Spaces of Rank One

We show the existence of isometric (or Ford) fundamental regions for a large class of subgroups of the isometry group of any rank one Riemannian symmetric space of noncompact type. The proof does not use the classification of symmetric spaces. All hitherto known existence results of isometric fundamental regions and domains are essentially subsumed by our work.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1979

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1979-0542087-0